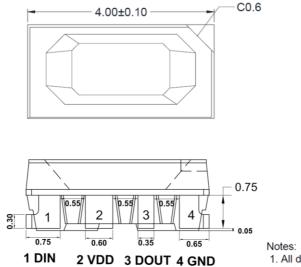
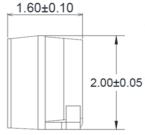
Features

- 4020 with integrated high quality constant current IC and RGB LED chip.
- Built-in IC, with high precision of constant current and internal RGB chips spectral processing in advance.
- Single line data transmission (return to zero code).
- Specific Shaping Transmit Technology number of LED stacked is not restricted.
- Cascading Enhancement Technology any 2 LED spacing can be up to 10 meters.
- Data transfer rate of 800 kbp/s at 30 frames per second.
- RGB output port PWM control can achieve 256 gray level adjustments.
- Upon powering up, IC performs self-inspection then lights connection on the pin B lamp.
- SA-I Anti-interference patent technology for single line data transmission.
- Built-in power supply reverse connects protection module, reversed power input will not damage the IC.


Description

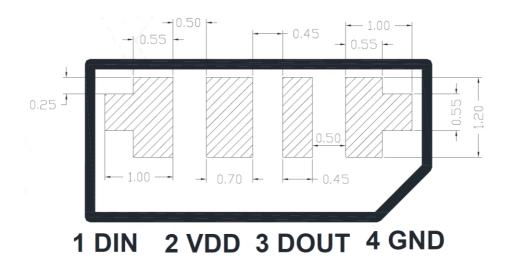

The IN-PI42TAS(X)R(X)G(X)B is 4.0*2.0*1.6mm RGB LED with integrated IC. It is a SMD type LED which can be used in various applications.

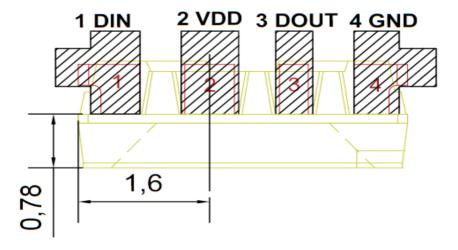
Applications

- Full color LED string light
- LED full color module
- LED guardrail tube
- LED scene lighting
- LED point light
- LED pixel screen
- LED shaped screen

Package Outline Dimensions & Pin Configuration

- 1. All dimensions are in millimeters.
- 2. Tolerance is $\pm 0.1 \text{mm}$ unless otherwise noted


Figure 1. IN-PI42TAS(X)R(X)G(X)B Package Outline Dimensions


Pin Configuration

Number	Number Symbol Function Description			
1	DIN	Control data signal input		
2	VDD	Power supply LED		
3	DOUT	Control data signal output		
4	GND	Ground		

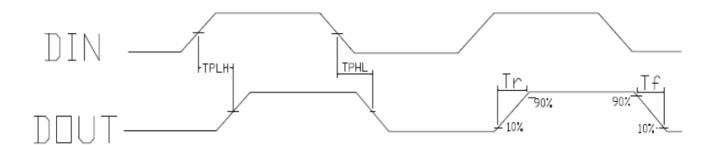
Recommended Soldering Pad Size

Soldering Pad Mapping

Absolute Maximum Rating (Ta = 25 °C, VSS=0V)

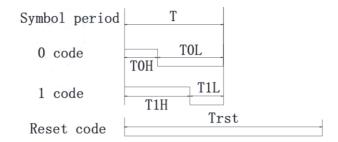
Parameter	Symbol	Range	Unit
Logic supply voltage	V _{DD}	+3.7~+5.5	V
Logic input voltage	VIN	-0.5 ~VDD+0.5	V
Operating temperature	Торт	-40~ + 85	°C
Storage temperature	Тѕтс	-40~ + 85	°C
ESD pressure (HBM)	Vesd	2K	V
ESD pressure (DM)	Vesd	200	V

LED Characteristics (*Ta* = 25°C)


Color	IN-PI42TA (5n	.S5R5G5B nA)	IN-PI42TASPRPGPB (12mA)			
Color	Wavelength(nm)	Light Intensity(mcd)	Wavelength(nm)	Light Intensity(mcd)		
Red	615-625	50-150	615-625	240-250		
Green	520-530	200-400	520-530	697.5-1162.5		
Blue	465-475	50-100	465-475	160-320		

Recommended Operating Ranges (unless otherwise specified, $Ta=25 \ \mathcal{C}$)

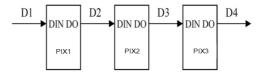
Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
Supply voltage	V_{DD}	3.7	5.0	5.5	V	-
High level input voltage	V _{IH}	2.6	-	-	V	VDD=5.0V
Low level input voltage	V _{IL}	-	-	1.7	V	VDD=5.0V
B/G/R output drive current	I _{DOUT}	10.5	12	13.5	mA	V _{DS} =1V
The frequency of PWM	F_{PWM}	-	4.0	1	KHZ	-
Static power consumption	I _{DD}	-	0.25	1	mA	-
Transfer rate	F_{DIN}	-	800	-	Kbps	-


Switching Characteristics (unless otherwise specified, Ta=25 $^{\circ}$ C)

Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions	
The speed of data transmission	F _{DIN}	-	800	-	KHZ	The duty ratio of 67% (data 1)	
DOUT transmission delay	T_{PLH}	ı	67	ı	ns	DIN→DOUT	
DOOT transmission delay	T_{PHL}	-	82	-	ns	DIN→DOOT	
Out R/B conversion	T_r	ı	22	ı	ns	IOUT R / B= 5mA/13mA, out R / B port connected	
time	\mathcal{T}_f	1	75	1	ı	with 200 Ω resistor to VDD in series, load capacitance to ground	
Out R/B conversion	T _r	-	18	-	ns	IOUT G = 5mA/13mA, out G port is connected with 200 Ω	
time	T_f	-	110	-	-	resistor to VDD in series, and the load capacitance to ground is 30pf	

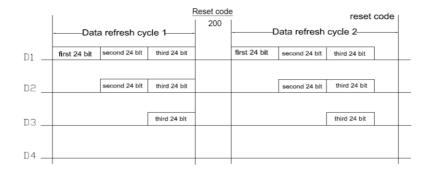
Timing Waveforms

1. Input Code


2. The data transmission time:

Name	Description	Min.	Typ. value	Max.	Unit
Т	Period	1.2	_	-	μs
T0H	0 code, high level time	0.2	0.32	0.4	μs
T0L	0 code, low level time	e, low level time 0.8 -		•	μs
T1H	1 code, high level time	0.65	0.75	1.0	μs
T1L	1 code, low level time	0.2	_	ı	μs
Trst	Reset code, low level time	>200	-	-	μs

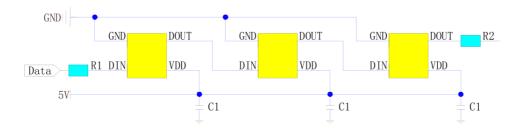
Note:


- 1. The protocol adopts unipolar zeroing code, and each symbol must have a low level. Each symbol in this protocol starts with a high level, and the duration of the high level determines the "0" or "1" code.
- 2. When writing a program, the minimum required code period is1.2µs.
- 3. The high-level time of "0" and "1" codes should be within the specified range in the table above, and the low-level time of "0" and "1" codes should be less than 20µs.

3. Connection Scheme

4. Data Transfer Format (Ta=25°C)

5.

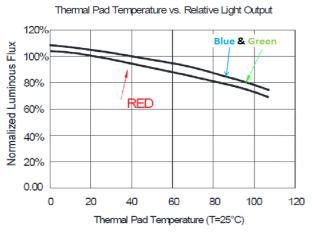

Note: D1 is the data sent by the MCU end, and D2, D3, and D4 are the data automatically shaped and forwarded by the cascaded circuit.

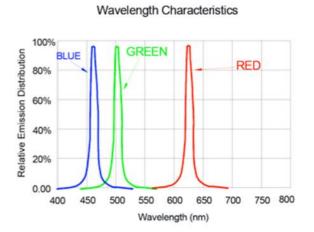
6. 24-bit data format

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	RO	В7	В6	B5	B4	В3	B2	В1	ВО

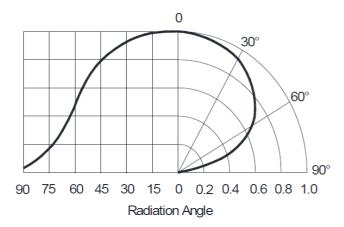
Note: The high bit is sent first, and the data is sent in the order of GRB. (G7 - G6 -B0)

Typical Application Circuit

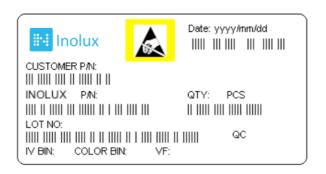



In practical application circuits, to prevent instantaneous high voltage damage to the internal signal input and output pins of the IC caused by live plugging and unplugging during testing, protective resistors should be connected in series at the signal input and output terminals. In addition, in order to ensure more stable operation between IC chips, the decoupling capacitance between each LED is essential.

Application 1: For soft or hard light strips with short transmission distance between lamp beads, it is recommended to connect protective resistors in series at the signal input and output terminals, R1, R2, about 500 ohms.


Application 2: Used for modules or general shaped products. The transmission distance between lamp beads is long. Due to different wire materials and transmission distances, the protective resistance of the signal line connected in series at both ends will be slightly different; Based on actual usage.

LED Performance Graph

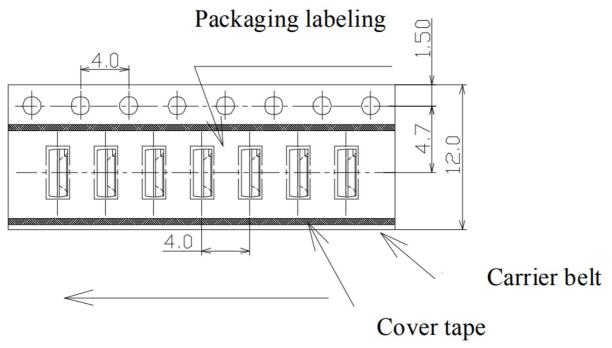

Typical Radiation Pattern 120°

Ordering Information

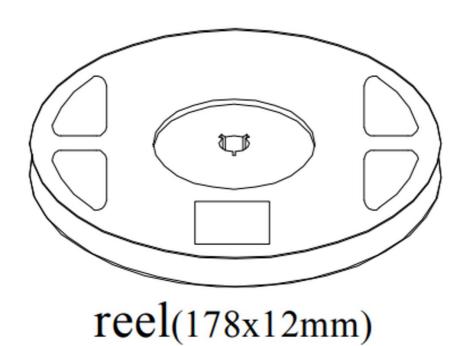
Product	Emission Color	IV(mcd)	Orderable Part Number		
	R	50-150			
IN-PI42TAS5R5G5B	G	200-400	IN-PI42TAS5R5G5B		
	В	50-100			
	R	240-250			
IN-PI42TASPRPGPB	G	697.5-1162.5	IN-PI42TASPRPGPB		
	В	160-320			

Label Specifications

Inolux P/N:

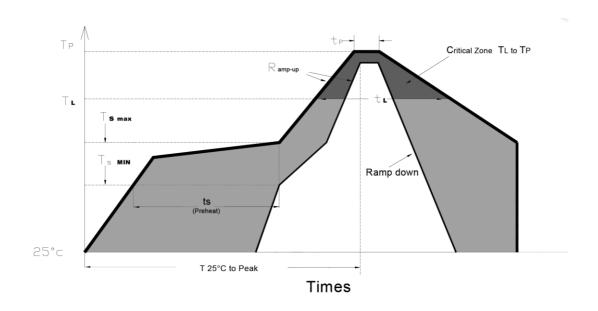

1	N	PI	-	42	Т	Α	S	(X)	R	(X)	G	(X)	В	-	X X X X
		Product		Package	Die Qty.	Variation	Orientation	Current	Color	Current	Color	Current	Color		Customized Stamp-off
li	iolux	PI- Single trace IC PC- Clock Function IC		42TA= 4	4.0 x 2.0 x	(1.6 mm	S = Side Mount	P=12mA 5 = 5mA	R = 620 nm	P=12mA 5 = 5mA	G = 525 nm	P=12mA 5 = 5mA	B = 470 nm		

Lot No.:


Z	2	0	1	7	01	24	001
Internal	ernal Year (2017, 2018,)					Date	Serial
Tracker		Teal (2017	, 2016,)		Month	Date	Serial

Packaging

Carrier feeding direction


Precautions

Please read the following notes before using the product:

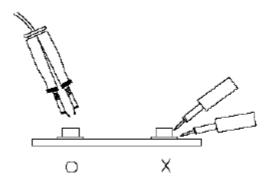
- 1. Storage
- 1.1 Do not open moisture proof bag before the products are ready to use.
- 1.2 Before opening the package, the LEDs should be kept at 30℃ or less and 80%RH or less.
- 1.3 The LEDs should be used within a year.
- 1.4 After opening the package, the remaining LEDs should be kept in a resealed bag.
- 1.5 The LEDs require mandatory baking before usage. Baking treatment listed below.
- 1.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

*Baking treatment: 60 ± 5 °C for 24 hours.

2. Soldering Condition Recommended soldering conditions:

Profile Feature	Lead-Free Solder
Average Ramp-Up Rate (Ts _{max} to Tp)	3°C/second max.
Preheat: Temperature Min (Ts _{min})	150 ℃
Preheat: Temperature Min (Ts _{max})	200 °C
Preheat: Time (ts _{min to} ts _{max})	60-180 seconds
Time Maintained Above: Temperature (T _L)	217 ℃
Time Maintained Above: Time (t L)	60-150 seconds
Peak/Classification Temperature (T P)	240 ℃
Time Within 5°C of Actual Peak Temperature (tp)	<10 seconds
Ramp-Down Rate	6°C/second max.
Time 25 °C to Peak Temperature	<6 minutes max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.



3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260°C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

5. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	05-31-2018
Format Adjustment		1.1	07-01-2018
Revise precautions	11	1.2	07-31-2019
Revise Drawing of Dimension and Soldering Pad Size	1, 2	1.3	09-10-2020
Update the drawing and parameter	1-6	1.4	03-25-2021
Revise Drawing of Soldering Pattern	2	1.5	10-10-2021
Revise Drawing of Soldering Pattern	1, 2	1.6	12-07-2022
Update the parameter	5	1.7	04-20-2023
Add packaging information	9	1.8	06-28-2024
Adjust the parameter	3	1.9	02-18-2025

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

^{1.} Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

^{2.} A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.