

Features

- 5050 with integrated high quality constant current IC and RGB LED chip.
- Built-in IC, with high precision of constant current and internal RGB chips spectral processing in advance.
- Single line data transmission (return to zero code).
- Specific Shaping Transmit Technology number of LED stacked is not restricted.
- Cascading Enhancement Technology any 2 LED spacing can be up to 10 meters
- Data transfer rate of 800 kbp/s at 30 frames per second.
- RGB output port PWM control can achieve 256 grey level adjustments.
- Upon powering up, IC performs self-inspection then lights connection on the pin B lamp.
- SA-I Anti-interference patent technology for single line data transmission.
- Built-in power supply reverse connect protection module, reversed power input will not damage the IC.

Description

The IN-PI55TAT(X)R(X)G(X)B is 5.0*5.0*1.6mm RGB LED with integrated IC. It is a SMD type LED which can be used in various applications.

Applications

- Full color LED string light
- LED full color module
- LED guardrail tube
- LED scene lighting
- LED point light
- LED pixel screen
- LED shaped screen

Package Outline Dimensions & Pin Configuration

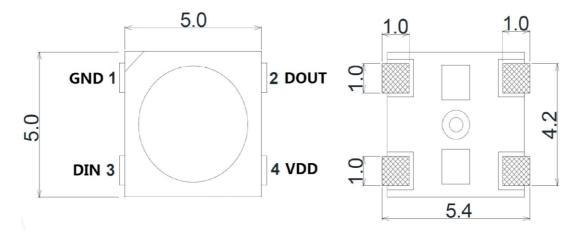
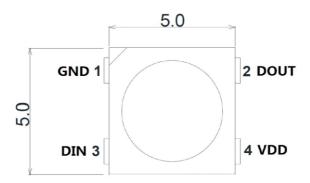
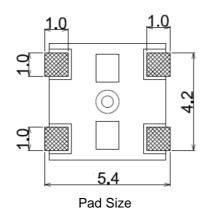
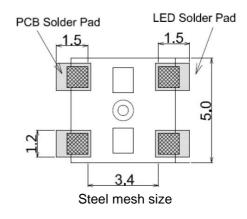


Figure 1. IN-PI55TAT(X)R(X)G(X)B Package Outline Dimensions

Pin Configuration




Figure 2. IN-PI55TAT(X)R(X)G(X)B Pin Configuration


Notes:

1. Dimension in millimeter, tolerance is ± 0.1 mm unless otherwise noted.

Number	Symbol	Function Description				
1	1 GND Ground					
2	DOUT Control data signal output					
3	3 DIN Control data signal input					
4	Power supply LED					

Soldering Pad Size

Notes:

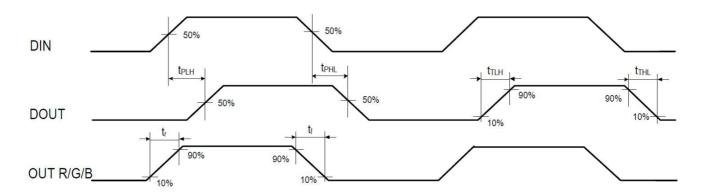
1. Dimension in millimeter, tolerance is ± 0.1 mm unless otherwise noted.

Absolute Maximum Rating (Ta = 25 °C, VSS=0V)

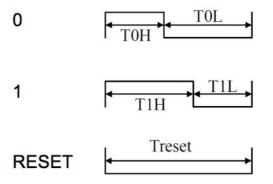
Parameter	Symbol	Range	Unit
Logic supply voltage	V _{DD}	+3.7~+5.4	V
Logic input voltage	VIN	-0.4 ~VDD+0.4	V
OUT R/G/B port withstand voltage	BV _{OUT}	16	V
Operating temperature	Торт	−30 ~ + 85	°C
Storage temperature	Тѕтв	-40 ~ + 90	°C
ESD pressure(HBM)	Vesd	4K	V
ESD pressure(DM)	Vesd	200	V

LED Characteristics (*Ta* = 25°C)

Color	IN-PI55TA (5mA Max. p	T5R5G5B er LED Chip)	IN-PI55TATPRPGPB (12mA Max. per LED Chip)				
	Wavelength(nm)	Light Intensity(mcd)	Wavelength(nm)	Light Intensity(mcd)			
Red	620-630	100-200	620-630	400-700			
Green	520-535	400-700	520-535	1000-1500			
Blue	460-475	50-100	460-475	200-400			

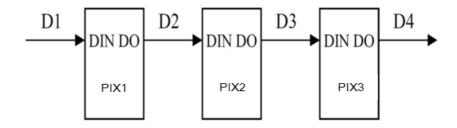

Recommended Operating Ranges (unless otherwise specified, Ta= -20 ~ +70 °C, VDD=4.5 ~ 5.5V, VSS=0V)

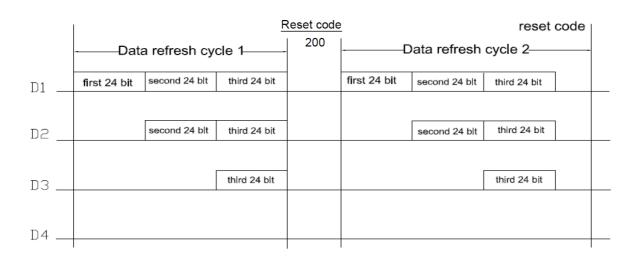
Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
Supply voltage	V _{DD}	1	5.0	1	V	-
High level input voltage	V _{IH}	0.7*VDD	1		V	VDD=5.0V
Low level input voltage	V _{IL}	-	-	0.3*VDD	V	VDD=5.0V
DOUT output current	Іон	-	-40	-		DOUT output is high, and 10 Ω resistance is connected in series to GND
DOUT perfusion current	I _{OL}	-	40	-		The output of DOUT is low, and the power supply injects current to DOUT
OUT R/G/B constant current knee point voltage	VDS_S	-	0.7	-		lout=12mA
OUT R/G/B output current	I _{OUT_R}	1	12	1		$V_{DS_R}=1V$
The frequency of PWM	F _{PWM}	1	1.2	-	KHZ	-
Static power consumption	I _{DD}	-	0.5	-	mA	VDD=4.5V lout "OFF"


Switching Characteristics (unless otherwise specified, Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
The speed of data transmission	fDIN	-	800	-	KHZ	The duty ratio of 67% (data 1)
DOLIT transmission delay	T_{PLH}	-	80	-	ns	The earth load
DOUT transmission delay	T_{PHL}	-	80	-	ns	capacitance of the dout port is 30pf.
	T _r	-	50	-	ns	IOUT R/G/B = 12mA, out port is connected
I _{ουτ} Rise/Drop Time	T_f	-	100	-	ns	with 200 Ω resistor to VDD in series, and the load capacitance to ground is 15pf

Timing Waveforms


1. Input Code

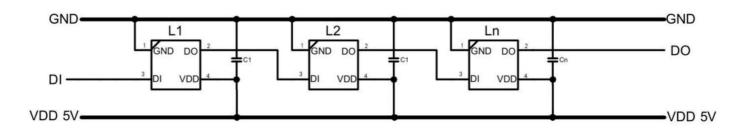

2. The data transmission time:

Name	Description	Min.	Тур.	Max.	Unit
ТОН	0 code, high level time	-	0.3µs	-	μs
TOL	0 code, low level time	-	0.9µs	•	μs
T1H	1 code, high level time	-	0.6µs	•	μs
T1L	1 code, low level time	-	0.6µs	•	μs
Trst	Reset code, low level time	200	-	-	μs

3. Connection Scheme

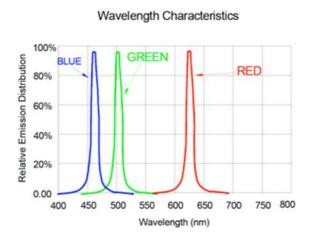
4. Data Transfer Format

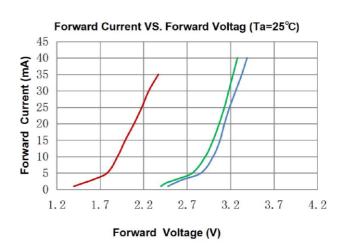
Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.

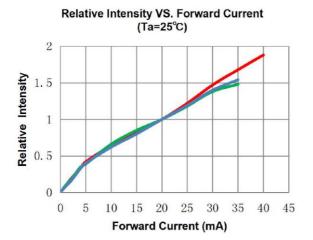

5. 24-bit data format

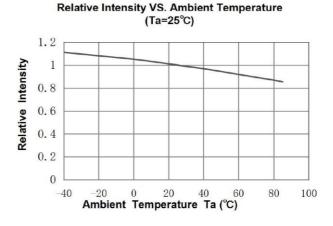
G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	RO	В7	В6	B5	В4	В3	B2	В1	во

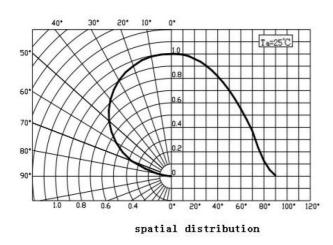
Note: high starting, in order to send data (G7 - G6 -B0)

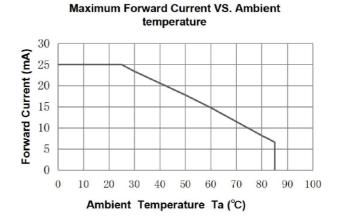

Typical Application Circuit

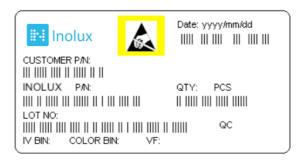



Note: C1 is the filter capacitor of LED VDD pin, the general value is 100nf




LED Performance Graph



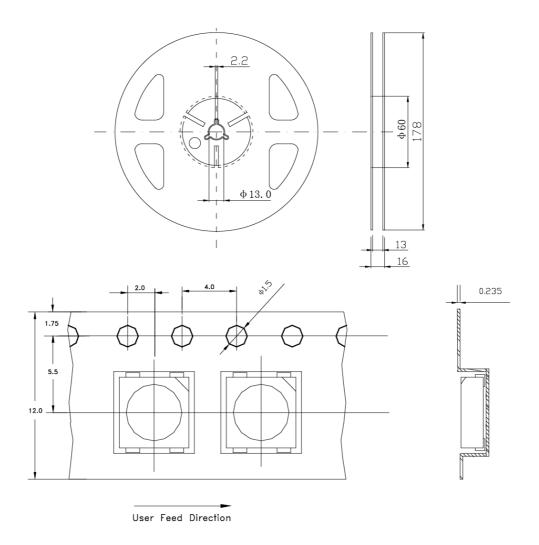


Ordering Information

Product	Emission Color	IV(mcd)	Orderable Part Number		
	R	100-200			
IN-PI55TAT5R5G5B	G	400-700	IN-PI55TAT5R5G5B		
	В	50-100			
	R	400-700			
IN-PI55TATPRPGPB	G	1000-1500	IN-PI55TATPRPGPB		
	В	200-400			

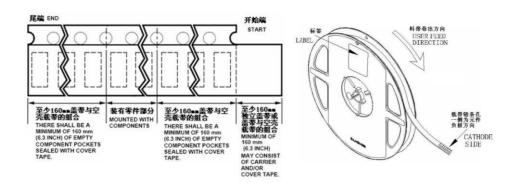
Label Specifications

Inolux P/N:


I	Ν	PI	-	55	Т	Α	Т	(X)	R	(X)	G	(X)	В	-	Х	Χ	Χ	Χ
		Product		Package	Die Qty.	Variation	Orientation	Current	Color	Current	Color	Current	Color			Custor Stam		
Inol	ux	PI- Single trace IC PC- Clock Function IC		55TA = 5	.0 x 5.0 x pins)	1.6 mm (4	T = Top Mount	P=12mA 5 = 5mA	R = 624 nm	P=12mA 5 = 5mA	G = 520 nm	P=12mA 5 = 5mA	B = 470 nm					

Lot No.:

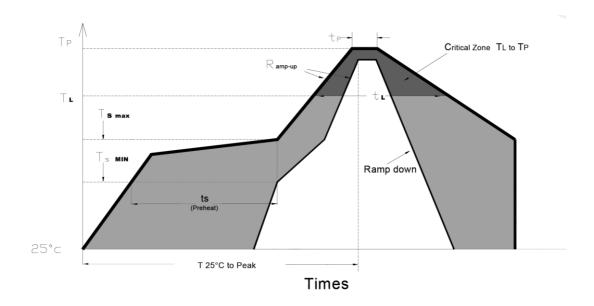
Z	2	0	1 7		01	24	001
Internal		Voor (2017	, 2018,)		Month	Date	Serial
Tracker		Teal (2017	, 2010,)		WOLLLI	Date	Serial



Packaging

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ±0.1 mm unless otherwise noted.


Precautions

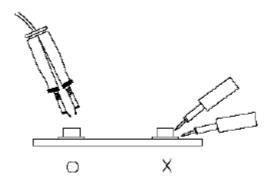
Please read the following notes before using the product:

- 1. Storage
- 1.1 Do not open moisture proof bag before the products are ready to use.
- 1.2 Before opening the package, the LEDs should be kept at 30° C or less and 80° RH or less.
- 1.3 The LEDs should be used within a year.
- 1.4 After opening the package, the LEDs should be kept at 30° C or less and 60%RH or less.
- 1.5 The LEDs should be used within 24 hours (1 days) after opening the package.
- 1.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: $60\pm5^{\circ}$ for 24 hours.

2. Soldering Condition Recommended soldering conditions:

Profile Feature	Lead-Free Solder				
Average Ramp-Up Rate (Ts _{max} to Tp)	3°C/second max.				
Preheat: Temperature Min (Ts _{min})	150 ℃				
Preheat: Temperature Min (Ts _{max})	200 °C				
Preheat: Time (ts _{min to} ts _{max})	60-180 seconds				
Time Maintained Above: Temperature (T _L)	217 ℃				
Time Maintained Above: Time (t L)	60-150 seconds				
Peak/Classification Temperature (T P)	240 ℃				
Time Within 5°C of Actual Peak Temperature (tp)	<10 seconds				
Ramp-Down Rate	6°C/second max.				
Time 25 °C to Peak Temperature	<6 minutes max.				

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.



3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260°C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

5. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	05-31-2018
Format Adjustment		1.1	07-01-2018
Format Adjustment		1.2	08-07-2018
Revise the Spec.	P3	1.3	12-25-2018
Revise the Drawing and Spec.	P1-P8	1.4	02-04-2021
Revise the Wording	P6	1.5	01-03-2023
Revise the Drawing.	P7	1.6	07-26-2023
Add packaging information	P10	1.7	03-05-2024-

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.