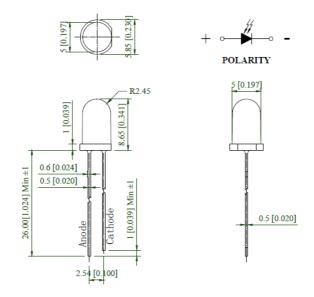


Features

- Low power consumption
- General purpose leads
- Bulk, Available on tape and reel
- Fast response time
- High photo sensitivity
- Small junction capacitance
- Compliance with EU REACH
- The product itself remain within RoHS compliant version


Applications

- High speed photo detector
- Automatic door sensor
- Security system
- Industrial equipment
- Infrared application system

Description

- The INL-5ANPD80 is a high speed and high sensitive silicon PIN photodiode in a standard 5mm epoxy package.
- Due to its black epoxy, the device is sensitive to near and infrared radiation.

Package Dimensions in mm

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25 mm (.010 $^{\prime\prime}$) unless otherwise noted.

Figure 1. INL-5ANPD80 Package Dimensions

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
VR	Reverse Voltage	32	V	1
Topr	Operating Temperature	-40~+80	°C	
Tstg	Storage Temperature	-40~+85	°C	
Tsol	Soldering Temperature	260	°C	2
Po	Total Power Dissipation	150	mW	

Notes

- 1. Test conditions : IR=100 μ A, Ee=0mW/cm₂.
- 2. Soldering time \leq 5 seconds.

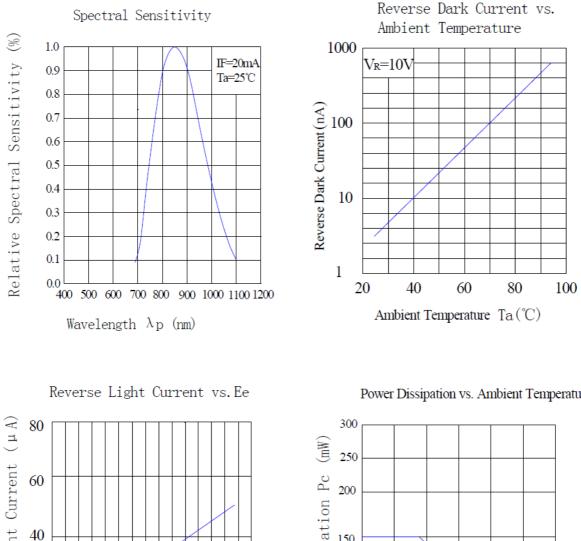
Electro-Optical Characteristics

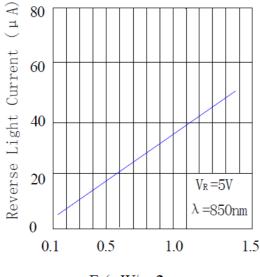
Symbol	Parameters	Test conditions	Min	Тур	Max	Units
λd	Rang of Spectral Bandwidth		700	-	1100	nm
λP	Wavelength of Peak Sensitivity		-	850		nm
Vbr	Reverse Breakdown Voltage	Ee=0mW/cm2 IR=100uA	32	170	-	V
Voc	Open-Circuit Voltage	Ee=1mW/cm² λ₀=850nm	-	0.4	-	V
lsc	Short-Circuit Current	Ee=1mW/cm² λ⊧=850nm	-	35	-	uA
lо	Dark Current	Ee=0mW/cm ² VR=10V	-	5	30	nA
١L	Reverse Light Current	Ee=1mW/cm ² λ _P =850nm, VR=5V	20	35	-	uA
tr	Rise Time	V _R =10V,	-	45	-	uS
tr	Fall Time	RL=100Ω	-	45	-	uS
Ст	Transition Capacitance	E _e =0mW/cm ² f=1MHz, VR=5V		18		pF
20 1/2	Receiving Angle	IF=20mA		80		Deg.

ESD Precaution

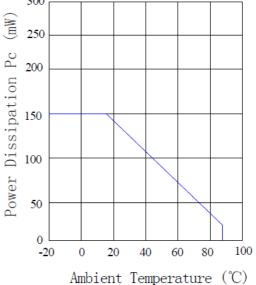
ATTENTION: Electrostatic Discharge (ESD) protection

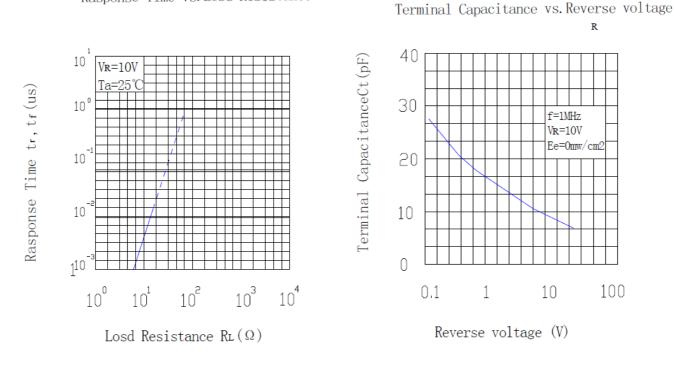
The symbol above denotes that ESD precaution is needed. ESD protection for GaP and AlGaAs based chips is necessary even though they are relatively safe in the presence of low static-electric discharge. Parts built with AlInGaP, GaN, or/and InGaN based chips are STATIC SENSITIVE devices. ESD precaution must be taken during design and assembly.


If manual work or processing is needed, please ensure the device is adequately protected from ESD during the process.


Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

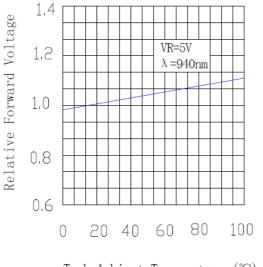
INL-5ANPD80 5mm Photodiode Through Hole Lamp LED

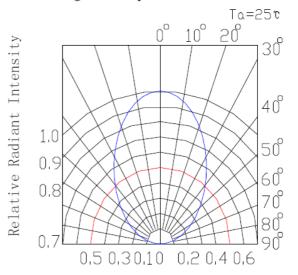

Typical Characteristic Curves



Ee(mW/cm2)

Power Dissipation vs. Ambient Temperature

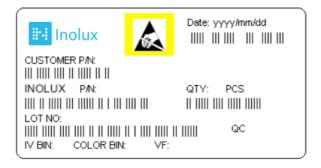



Rasponse Time vs. Losd Resistance

Relative Reverse Light Current vs. Ambient Temperatyre(°C)

Tamb-Ambient Temperature (°C)

Relative Radiant Intensity vs. Angular Displacement



Ordering Information

Product	Symbol	Parameters	Test conditions	Min	Тур	Max	Units	Orderable Part Number
INL-5ANPD80	L	Reverse Light Current	Ee=1mW/cm² λ⊳=850nm, VR=5V	20	35	-	uA	INL-5ANPD80

Label Specifications

Inolux P/N:

I	Ν	L	-	5	А	N	PD	8	0	•	х	х	х	Х
				Pacl	kage	Lens	Color	View A	Angle			Custo Stam	mized ıp-off	
	Inolux Lamp Typ	e		stan	A = dard nm	N = Black Epoxy	PD = Photo Diode	80 = 80) deg.					

Lot No.:

Z	2	0	1	7	01	24	001
Internal		Year (2017	2019	Month	Data	Serial	
Tracker		fear (2017	, 2018,)	wonth	Date	Serial	

Reliability

Item	Frequency/ lots/ samples/	Standards	Conditions
Item	failures	Reference	
	For all reliability	J-STD-020	1.) Baking at 85°C for 24hrs
Precondition	monitoring tests according		2.) Moisture storage at 85°C/ 60% R.H. for
	to JEDEC Level 2		168hrs
	1Q/ 1/ 22/ 0	JESD22-B102-B	Accelerated aging 155°C/ 24hrs
Solderability		And CNS-5068	Tinning speed: 2.5+0.5cm/s
			Tinning: A: 215°C/ 3+1s or B: 260°C/ 10+1s
		CNS-5067	Dipping soldering terminal only
Resistance to			Soldering bath temperature
soldering heat			A: 260+/-5°C; 10+/-1s
			B: 350+/-10°C; 3+/-0.5s
	1Q/ 1/ 40/ 0	CNS-11829	1.) Precondition: 85°C baking for 24hrs
Operating life test			85°C/ 60%R.H. for 168hrs
			2.) Tamb25°C; IF=20mA; duration 1000hrs
High humidity,	1Q/ 1/ 45/ 0	JESD-A101-B	Tamb: 85°C
high temperature			Humidity: 85% R.H., IF=5mA
bias			Duration: 1000hrs
High temperature	1Q/ 1/ 20	IN specs.	Tamb: 55°C
bias			IF=20mA
5103			Duration: 1000hrs
	1Q/ 1/ 40/ 0		Tamb25°C, If=20mA,, Ip=100mA, Duty
Pulse life test			cycle=0.125 (tp=125 μ s,T=1sec)
			Duration 500hrs)
	1Q/ 1/ 76/ 0	JESD-A104-A	A cycle: -40 degree C 15min; +85 degree C
Temperature		IEC 68-2-14, Nb	15min
cycle			Thermal steady within 5 min
Cycle			300 cycles
			2 chamber/ Air-to-air type
High humidity	1Q/ 1/ 40/ 0	CNS-6117	60+3°C
storage test			90+5/-10% R.H. for 500hrs
High temperature	1Q/ 1/ 40/ 0	CNS-554	100+10°C for 500hrs
storage test			
Low temperature	1Q/ 1/ 40/ 0	CNS-6118	-40+5°C for 500hrs
storage test			

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	01-24-2019
Revise Parameter	2	1.1	03-15-2022

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.