

Features

- 6.3*12.5mm*1 Segment
- Bar Graph
- White Face, White Segment
- Easy assembly
- RoHS Compliant, Pb Free

Applications

- Consumer Electronics
- Industrial Equipment

Description

The INBD-T1125.XNW series is 6.3*12.5mm*1
Segment display. It is a Through Hole type LED display which can be used in various applications.

Internal Circuit Diagram

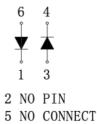


Figure 1. INBD-T1125.XNW Internal Circuit Diagram

Package Dimensions & All Light On Segments Feature

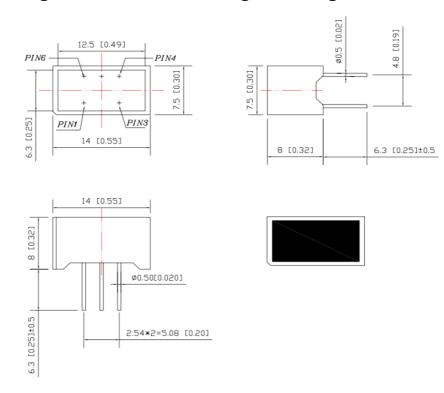


Figure 2. INBD-T1125.XNW Package Dimensions

Notes

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm (.010") unless otherwise noted.

Absolute Maximum Rating at 25°C (Note 1)

Product (Per Segment)	Emission Color	Pd (mW)	IF (mA)	IFP* (mA)	VR (V)	T _{OP} (°C)	T _{ST} (°C)
INBD-T1125.YGNW	Yellow Green	1 48 1 20 1 100		100	5	-40°C~+80°C	-40°C~+85°C
INBD-T1125.ANW	Amber	48	48 20 100 5 -40°C~+80		-40°C~+80°C	-40°C~+85°C	
INBD-T1125.RNW	Red	48	20	100	5	-40°C~+80°C	-40°C~+85°C
INBD-T1125.BNW	Blue	35	10	50	5	-40°C~+80°C	-40°C~+85°C
INBD-T1125.WNW	White	35	10	50	5	-40°C~+80°C	-40°C~+85°C

Notes

1. Condition for IFP is pulse of 1/10 duty and 0.1msec width

Electrical Characteristics T_A = 25℃ (Note)

		V _F (V)@10mA		λ(nm)@20mA		I* _V (mcd)@10mA			I _R (μA)@V _R =5V	I _{V-M} @I _F =10mA
Product (Per Segment)	Emission Color	min	typ.	λ_{D}	λ_{P}	min	typ.	max	max	max
INBD-T1125.YGNW	Yellow Green	-	1.7	572	575	5.5	11	-	50	2:1
INBD-T1125.ANW	Amber	-	1.9	605	610	13	26	-	50	2:1
INBD-T1125.RNW	Red	-	1.8	624	632	21	42	ı	50	2:1
INBD-T1125.BNW	Blue	-	2.9	470	468	18	36	-	50	2:1
INBD-T1125.WNW	White	-	2.9		X: 0.3 Y: 0.31		135	-	50	2:1

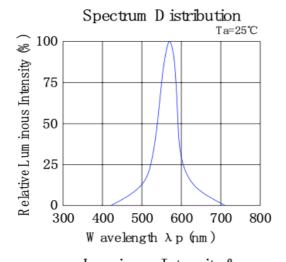
Notes

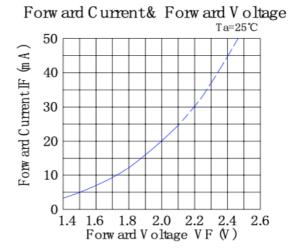
- 1. Performance guaranteed only under conditions listed in above tables.
- 2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 3. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device
- 4. Luminous Intensity is an average value which is measured one 7-segment. Tolerance of Luminous Intensity: ±10%.
- 5. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.
- 6. The chromaticity coordinates (x, y) is derived from the 1931 CIE chromaticity diagram.

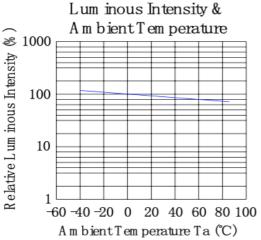
ESD Precaution

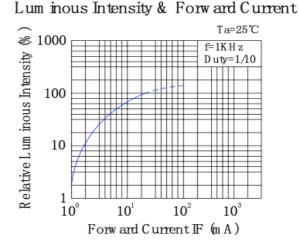
ATTENTION: Electrostatic Discharge (ESD) protection

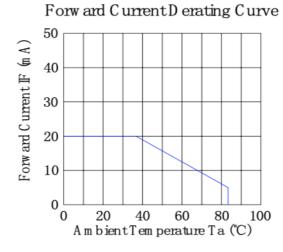
The symbol above denotes that ESD precaution is needed. ESD protection for GaP and AlGaAs based chips is necessary even though they are relatively safe in the presence of low static-electric discharge. Parts built with AllnGaP, GaN, or/and InGaN based chips are STATIC SENSITIVE devices. ESD precaution must be taken during design and assembly.

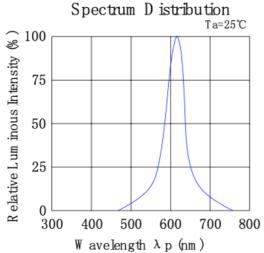

If manual work or processing is needed, please ensure the device is adequately protected from ESD during the process.

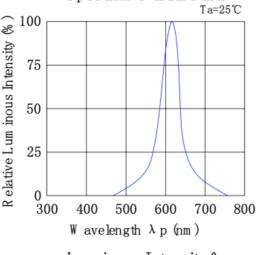

Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

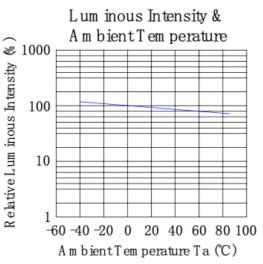



Characteristic Curves-Per Die Yellow Green

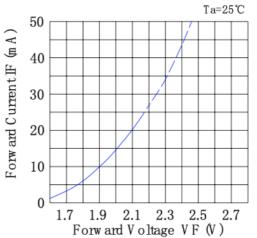

(Ta = 25°C Unless Otherwise Noted)

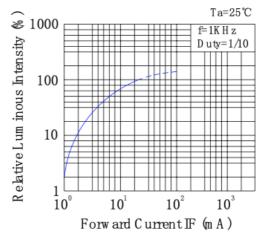


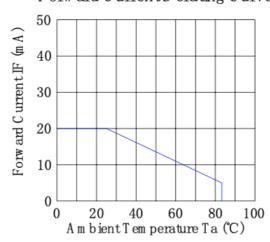




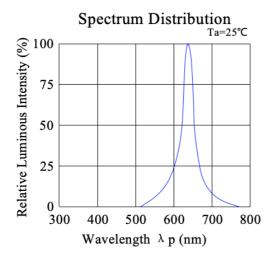
Characteristic Curves-Per Die Amber

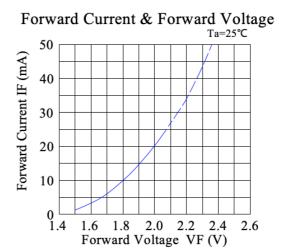

(Ta = 25°C Unless Otherwise Noted)

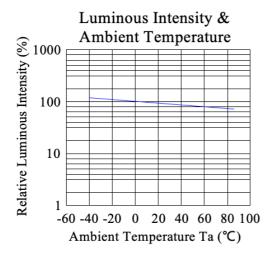


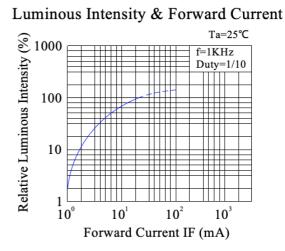


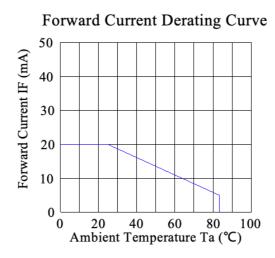
Lum inous Intensity & Forward Current

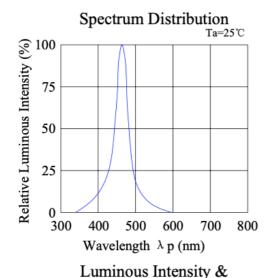

Forward CurrentDerating Curve

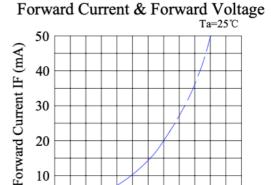




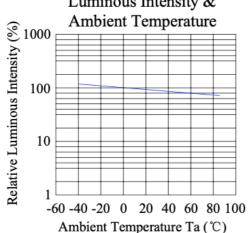

Characteristic Curves-Per Die Red

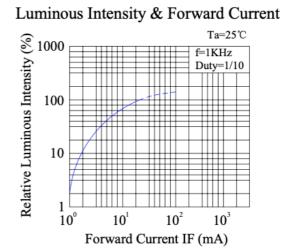

(Ta = 25°C Unless Otherwise Noted)





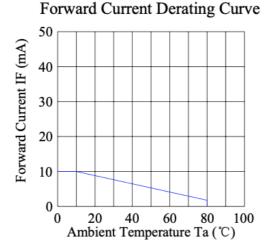
Characteristic Curves-Per Die Blue


(Ta = 25°C Unless Otherwise Noted)



10

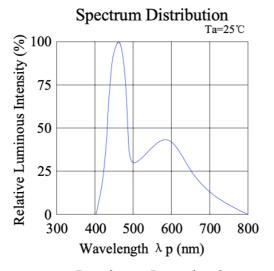
0

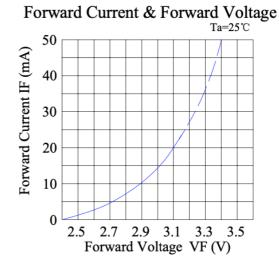

2.7

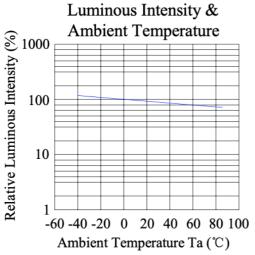
2.9

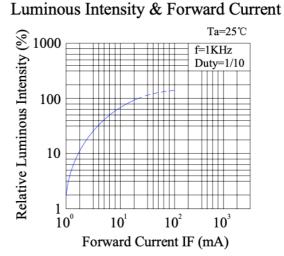
3.1

Forward Voltage VF (V)


3.3

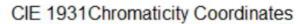


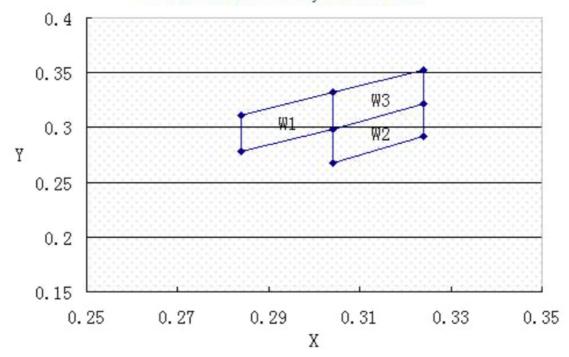



Characteristic Curves-Per Die White

(Ta = 25°C Unless Otherwise Noted)

Forward Current Derating Curve The state of the state of

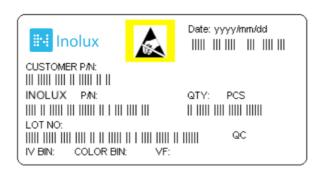



Chromaticity Bin (for White only)

Color Bin at IF = 10mA

Bin Code	CIE 1931Chromaticity Coordinates								
14/4	х	0.284	0.284	0.304	0.304				
W1	у	0.278	0.311	0.332	0.298				
\\\\2	х	0.304	0.304	0.324	0.324				
W2	у	0.268	0.298	0.322	0.292				
W3	х	0.304	0.304	0.324	0.324				
VV3	у	0.298	0.332	0.352	0.322				

Tolerance on each Hue (x, y) bin is +/-0.01.

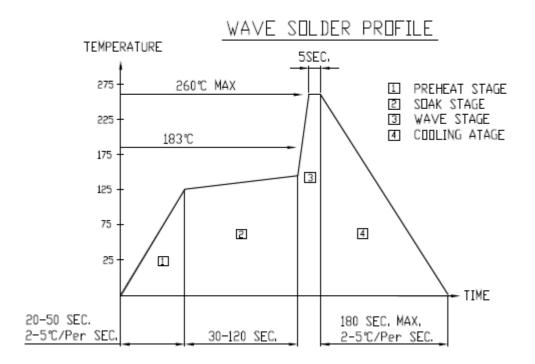


Ordering Information

Product	Emission Color	I*V(mcd) @10mA	VF(V) @10mA	Polarity	Face Color	Orderable Part Number
INBD-T1125.YGNW	Yellow Green	11	1.7	No Common	White	INBD-T1125.YGNW
INBD-T1125.ANW	Amber	26	1.9	No Common	White	INBD-T1125.ANW
INBD-T1125.RNW	Red	42	1.8	No Common	White	INBD-T1125.RNW
INBD-T1125.BNW	Blue	36	2.9	No Common	White	INBD-T1125.BNW
INBD-T1125.WNW	White	135	2.9	No Common	White	INBD-T1125.WNW

Label Specifications

Inolux P/N:


ı	N	В	D	-	T	1	1	2	5	X	N	W	-	Χ	ХХ	X
		Disp Typ			Display Type	Ma	trix	Dimer	nsion	Color	Polarity	Face Color			stomiz tamp-c	
lno	lux	BD Ba Gra _l Disp	r ph		T: Through Hole Type	11 1 x		25 = (Disp Hei	lay	YG: 572nm A: 605nm R: 624nm B: 470 nm W: X: 0.3 Y: 0.31	N = No Common	W = White				

Lot No.:

Z	2	0	1	7	01	24	001
Internal Tracker		Year (2017	, 2018,)		Month	Date	Serial

Reflow Soldering

Soldering Iron

Basic Spec is \leq 4 sec. when 260°C (+10°C \Rightarrow -1 second). Power dissipation of Iron should be less than 15W. Surface temperature should be under 230°C

Rework

Rework should be completed within 4 second under 245°C

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	01-28-2021

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.